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Intro: behavior planning
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Behavior planning in robotics

The agent prepare the sequence
of high-level actions

The agent do not interact with
environment during planning
process

The set of actions is predefined

The agent uses a certain
knowledge representation
technique

Kim, B., Wang, Z., Kaelbling, L.P., Lozano-Pérez, T.: Learning
to guide task and motion planning using score-space
representation. International Journal of Robotics Research. 38,
793–812 (2019).
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Behavior planning in STRIPS

State – a certain set of facts, closed atomic formulas of the predicate calculus
language of the first order, represents a model of the environment in which an
intelligent agent acts, an example:

s = {ATR(a),AT (B, b),AT (C , c), ∀u∀x∀y((AT (u, x) ∧ (x 6= y)) → ¬AT (u, y))}

I ATR(a) – robot at the room a,
I AT (B, b) – box B at the room b

The agent’s actions are described using rules: both in the sets of added and deleted

facts, only atomic formulas without functional symbols are used, for example:

I Rule name: Push(x , y , z)
I Condition: C(R) = {ATR(y),AT (x , y)}
I Added facts: A(R) = {ATR(z),AT (x , z)}
I Deleted facts: D(R) = {ATR(y),AT (x , y)}

The agent’s execution of an action is reduced to the application of a rule ot

modification of the state s
R,θ
==⇒ s ′, where θ – substitution of domain elements

instead of variables:
s ′ = (s \ (D(R)θ)) ∪ (A(R)θ))
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Domain and planning task
Planning domain P = 〈s0,ΣR〉, where s0 – initial state, ΣR – finite
set of rules

If G – agent’s target fact, or goal, than planning task T = 〈P,G 〉
The solution of the planning task T is to find a plan that achieves the
goal G

Plan – is a sequence of states s0, . . . , sn, sequence of rules R1, . . . ,Rn

and sequence of substitutions θ1, . . . , θn, such that G feasible in sn,
length of the plan is equal n:

Plan : s0
R1,θ1
===⇒ s1

R2,θ2
===⇒ s2 . . .

Rn,θn
===⇒ sn

Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting. Automated Planning and Acting. (2016).
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Overtaking scenario in Apollo

Maneuver planning in
autonomous driving – predefined
scenarios

Behavior tree – search space
representation

We can decode BT as string –
/(&(cegY)&(ikmZ)X)

Idea - apply genetic
programming to force the search
over BT variants

Jamal, M., Panov, A.I.: Adaptive maneuver planning for
autonomous vehicles using behavior tree on Apollo Platform. In:
Bramer, M. and Ellis, R. (eds.) Artificial Intelligence XXXVIII.
SGAI 2021. Lecture Notes in Computer Science. (2021).
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Planning in sign-based world model

Sign-based world model as special case of knowledge representation

Human-robot interaction and transparent decision making

Multi-agent planning and role distribution

Case-based hierarchical planning

Kiselev, G., Panov, A.: Hierarchical Psychologically Inspired Planning for Human-Robot Interaction Tasks. In: Ronzhin, A.,
Rigoll, G., and Meshcheryakov, R. (eds.) Interactive Collaborative Robotics. ICR 2019. Lecture Notes in Computer Science. pp.
150–160. Springer (2019).
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Intro: reinforcement learning
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Learning and adaptation for intelligent agents

Sufficient properties of the intelligent agent: adaptation and
autonomy

Robotic applications: we can replace handcrafted and analytical
methods with learnable models
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Reinforcement learning: preliminaries

Split the environment and the agent –
the source and acceptor of the data
are explicitly present in the statement
of the problem

There is no teacher or supervisor, i.e.
the error of the model is not set
explicitly, but is indirectly transmitted
through a reward

Feedback from the environment may
arrive with a delay

The time parameter has a special
meaning – sequential data

The agent’s actions affect the
incoming data in the future

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. An Introduction. 2018.
Laura Graesser and Wah Loon Keng. Foundations of Deep Reinforcement Learning: Theory and Practice in Python. 2020.
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Markov decision process
Lets 〈S ,A,T ,R,G , γ〉 – Markov decision process, where:

S – state space,

A – the set of actions (discrete or continuous),

T : S × A→ S – transition function,

R : S × A→ R – reward function,

G : S → {0, 1} – goal function defining termination state,

γ – discounting factor.

The agent acts using policy function that maps S to A (stochastic or
determined):

π : S → A

Agent’s goal – maximize expected return by policy π:

Eπ
τ∑

t=0

γtR(st , at)
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Q-function and grid example

E = (M,R) - environment, where M - grid
map, R(ps , pf ) - reward generator,

at = pt → pt+1 - movement actions,

st ∈ R(2d)2
-agent’s observations (not the same

as state)

Lets Q∗(st , at) = maxπE[R|st , at , π] - optimal value function, then given
the definition R we obtain the following Bellman equation:

Q∗(s, a) = Est∼E

[
rt + γmax

at
Q∗(st , at) |s, a

]
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Value function approximation

To solve the Bellman equation by iterative methods, various
approximations of the function are used Q∗(s, a): Q(s, a; θ) ≈ Q∗(s, a).

During the training process, the θ parameters are adjusted as a result of
minimizing the loss function L(θ):

Li (θi ) = Es,a∼ρ(·)

[
( yi − Q(s, a; θi ))2

]
,

yi = Est∼E

[
rt + γmax

at
Q(st , at ; θi−1)|s, a

]

∇θiLi (θi ) = Es,a∼ρ(·);st∼E [(rt + γmaxatQ(st , at ; θi−1) −
−Q(s, a; θi ))∇θiQ(s, a; θi )] .
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Current state-of-the-art in RL
Model-free success cases: Atari, OpenAI Five, AlphaStar etc.
Problems with sample-efficiency:

I DQN , A3C and Rainbow DQN have been applied to ATARI 2600
games and require from 44 to over 200 million frames (200 to over 900
hours) to achieve human-level performance

I OpenAI Five utilizes 11,000+ years of Dota 2 gameplay
I AlphaZero uses 4.9 million games of self-play in Go
I AlphaStar uses 200 years of Starcraft II gameplay

Low robustness to task-irrelevant perturbations

Promising approaches: hierarchical methods, demonstration and
imitation learning, and more effective world models

Silver D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science. 2018.
Berner C. et al. Dota 2 with Large Scale Deep Reinforcement Learning. 2019.
Vinyals O. et al. Alphastar: Mastering the real-time strategy game Starcraft II. DeepMind blog. 2019.

A.I. Panov (MIPT, AIRI) OO-MB RL 26 November 15



Planning and learning
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Planning and learning in Atari

Learning:
I the agent does not know game rules,
I interactive learning in the

environment,
I discrete actions and raw pixels as a

state

Planning:
I the agent knows game rules – ideal

world model,
I the agent can star simulator,
I planning without interaction with the

environment – tree search
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Some realization of integrated models
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Common scheme for planning and learning

a – plan over a learned model,

b – use information from a policy/value network to improve the planning
procedure,

c – use the result from planning as training targets for a policy/value,

d – act in the real world based on the planning outcome,

e – act in the real world based on a policy/value function,

f – generate training targets for the policy/value based on real world data,

g – generate training targets for the model based on real world data

Yi, Fengji, Wenlong Fu, and Huan Liang. Model-based reinforcement learning: A survey. 2020.
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Some realization of integrated models
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Simultaneous learning and planning architecture
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Panov A.I. Simultaneous Learning and Planning in Hierarchical Control System for the Cognitive Agent. 2021.
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Integration options

Sequentional: planning one part of task and use learning policy for another
part – not in the focus of current talk

Hierarchical: planning over skills and learn skill policy

Hybrid: on-line switching between planner and learning policy

On-model: planning on learnable model – “MCTS-based”

Dreamy: learn the policy on planned trajectories–
“Dreamer-based”

Aitygulov, E., Kiselev, G., Panov, A.I.: Task and Spatial Planning by the Cognitive Agent with Human-like Knowledge
Representation. In: Ronzhin, A., Rigoll, G., and Meshcheryakov, R. (eds.) Interactive Collaborative Robotics. ICR 2018. Lecture
Notes in Computer Science. pp. 1–12. Springer (2018).
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Hierarchical integration
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Learning of spatial actions

Hierarchical planning – MAP planner

Blocks World environment

Actions: spatial movements and object
manipulations

Using Q-learning to find a low-level policy

Kiselev, G., Panov, A.I.: Q-learning of Spatial Actions for
Hierarchical Planner of Cognitive Agents. In: Ronzhin, A.,
Rigoll, G., and Meshcheryakov, R. (eds.) Interactive
Collaborative Robotics. ICR 2020. Lecture Notes in Computer
Science. pp. 160–169. Springer International Publishing (2020).
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Reinforcement learning in robot navigation task

Object navigation task: set of object
classes

Semantic scene representation: object
segmentation

End-to-end reinforcement learning
approach

Staroverov A. et al. Real-Time Object Navigation with Deep Neural Networks and Hierarchical Reinforcement Learning // IEEE
Access. 2020.
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Hierarchical policy optimization with landmarks

Task formulation with landmarks (brief
information about rooms)

Dividing policy into a set of skills and
hierarchical structure

Smooth policy transfer to new
real-world scenes

Staroverov A., Panov A. I. Landmark Policy Optimization for Object Navigation Task. ArXiv:2109.09512.
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Robotic realization of HLPO

Staroverov A., Panov A. I. Landmark Policy Optimization for Object Navigation Task. ArXiv:2109.09512.
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Forger as object-oriented skill formation from
demonstration

Forgetting mechanism for learning from demonstrations

High-level expert plan extraction from demonstrations

Skrynnik A. et al. Forgetful experience replay in hierarchical reinforcement learning from expert demonstrations.
Knowledge-Based Systems. 2021.
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Policy Optimization to Learn Adaptive
Motion Primitives

Path planning with kinodynamic
constraints

Learnable steering function for
sample-based planner

Curriculum PPO on specially
collected dataset in simulator

Angulo, B., Yakovlev, K., Panov, A.I.: Policy Optimization to Learn Adaptive Motion Primitives in Path Planning with Dynamic
Obstacles (2021).
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POLAMP preliminary results

Angulo, B., Yakovlev, K., Panov, A.I.: Policy Optimization to Learn Adaptive Motion Primitives in Path Planning with Dynamic
Obstacles (2021).
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Hybrid policy optimization: decomposition

Multi-agent pathfinding setting

Partial observations of the grid
world

Two subproblems: goal reaching
and conflict resolution

Skrynnik, A., Yakovleva, A., Davydov, V., Yakovlev, K., Panov, A.I.: Hybrid Policy Learning for Multi-Agent Pathfinding. IEEE
Access. 9, 126034–126047 (2021).
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Hybrid policy optimization: MCTS and results

Skrynnik, A., Yakovleva, A., Davydov, V., Yakovlev, K., Panov, A.I.: Hybrid Policy Learning for Multi-Agent Pathfinding. IEEE
Access. 9, 126034–126047 (2021).
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Model-based RL
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Model-based RL setting
Model-free setting

Model-based setting
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Formal setting
Lets 〈S ,A,T ,R,G , γ〉 – Markov decision process, where:

S – state space,

A – the set of actions (discrete or continuous),

T : S × A→ S – transition function,

R : S × A→ R – reward function,

G : S → {0, 1} – goal function defining termination state,

γ – discounting factor.

The agent has access to an updatable model M =< T̂ , R̂ > and can
build a plan to achieve the goal G (sn+1) = 1 by modeling transitions:

Plan =< si , ri , ai , ŝi+1, r̂i+1, ai+1, . . . , ai+n, ŝi+n+1 >

Agent’s goal – maximize expected return by policy π:

Eπ
τ∑

t=0

γtR(st , at)
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Model-based RL: simple realization
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Model representation

The model M – MDP representation 〈S ,A,T ,R〉 parameterized by η

Suppose that the set of states S and the set of actions A are known

For this case the model M = 〈T̂η, R̂η〉 represents a function T̂η ≈ T
and a reward function R̂η ≈ R:

st+1 ∼ T̂η(st+1|st , at),

rt+1 = R̂η(rt+1|st , at)
It is usually assumed that the functions of transitions and rewards are
conditionally independent:

P[st+1, rt+1|st , at ] = P[st+1|st , at ]P[rt+1|st , at ]
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Model learning

Goal: evaluate a model Mη using experience {s1, a1, r2, . . . , st}
Supervised learning tasks:

s1, a1 →r2, s2

s2, a2 →r3, s3

...

st−1, at−1 →rt , st

Learning a mapping s, a→ r – the task of regression

Learning a mapping s, a→ s ′ – the task of probability density
estimate

Choose a loss function, for example, the root-mean-square error or
KL-divergence

Search for η parameters that minimize the empirical loss function
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E2C algorithm

Images of xt as observations-states (raw pixels)

Controlling nonlinear systems

Variational auto-encoder hencφ + hdecθ as generative model

In latent space zt dynamic is linear:
I using network htransψ to calculate matrices At ,Bt , ot and predict the

next ẑt+1,
I apply KL-divergence between ẑt+1 and zt+1 as a loss function

Watter J. et al. Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images. NeurIPS. 2015.
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Neural ODE as a model: preliminary schema
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Neural networks as world models

Recurrent state-space model:

partially observable case and raw feature space,

dynamics in latent space,

high computational efficiency

Hafner D. et al. Learning latent dynamics for planning from pixels. ICML. 2019.
Hafner D. et al. Dream to Control: Learning Behaviors by Latent Imagination. ICLR. 2020.
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Dreamer algorithm

Model components:
I representation model pθ(st |st−1, at−1, ot),
I observation model qθ(ot |st),
I reward model qθ(rt |st),
I transition model qθ(st |st−1, at−1)

The model is trained with a variational loss function on mutual information:

I (s1:T ; (o1:T , r1:T )|a1:T )− βI (s1:T , i1:T |a1:T )

The agent is trained to maximize the value function along imaginary
trajectories

Experience is collected taking into account the representation model
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Retrospective multitask adaptation

Adapted RSSM-like world models for a multitask case

Original addressing mechanism, the training of which can be
formalized in the form of a one-step meta-MDP

Using model-based RL with an addressing mechanism in a
photorealistic robotic simulator

Zholus A. et al. Multitask Adaptation by Retrospective Exploration with Learned World Models. 2021.
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Dreamer with subject and object layers
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Conclusion
We need to increase the level of autonomy of robots

Behavior planning can be more adaptive when integrated with learning
methods

Learnable models can be applied for complex tasks when integrated with
planning methods

There are several options for integration: sequential, hierarchical, on-model
and dreamy

We create methods realizing all types of integration:
I hierarchical planning and learning: MAP-RL, HLPO, HPS, ForgER,

POLAMP, HPS,
I model-based reinforcement learning: neural ODE, RAMA, dual Dreamer

We develop the unified architecture for simultaneous learning and planning –
SLAP agent

Collaborators:
Alexey Skrynnik (AIRI),Alexey Staroverov (AIRI), Artem Zholus (MIPT), Andrey
Gorodetsky (MIPT), Brian Angulo (Integrant), Konstantin Yakovlev (FRC CSC

RAS)
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IGLU challenge

Agent can easily extract information about objects

Agent should learn to construct more complex objects

We need to realize some example of object and symbol grounding

https://www.iglu-contest.net/
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Special issue on Neural Symbolic Integration

Special Issue “Neural-Symbolic Cognitive Architectures” in Cognitive
Systems Research (Q1 in WoS by 2021 JCR) – August 2021

Neural-Symbolic Integration
approaches

Symbol grounding problem

Reinforcement learning
methods in cognitive systems

Hybrid knowledge
representation

Vector-symbolic architectures

Applied semiotics and
semiotic cognitive
architectures

Cognitive and Social Robotics

Integrated models of
Learning and Reasoning

Biologically inspired cognitive
architectures

Emotionally intelligent agents

Simultaneous Learning and
Planning

Human-analogous active
learning

Artificial and collaborative
creativity

Explainable AI models and
systems

General theory of
neural-symbolic computation
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Thank you for your attention!

cogmodel.mipt.ru

airi.net

raai.org

panov.ai@mipt.ru
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