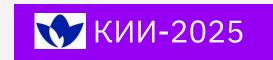


АНАЛИЗ МЕТОДОВ ОЦЕНКИ **ВАЖНОСТИ ПРЕДИКТОРОВ** НЕБЛАГОПРИЯТНЫХ СОБЫТИЙ В КАРДИОХИРУРГИИ

Работа выполнена при финансовой поддержке проекта FZNS-2023-0010 Госзадания Дальневосточного федерального университета (ДВФУ)

КИИ-2025


ШАХГЕЛЬДЯН К.И.,

д-р техн. наук, профессор, директор научно-образовательного центра "Искуственный Интеллект" carinashakh@gmail.com

ПОТАПЕНКО Б.В.

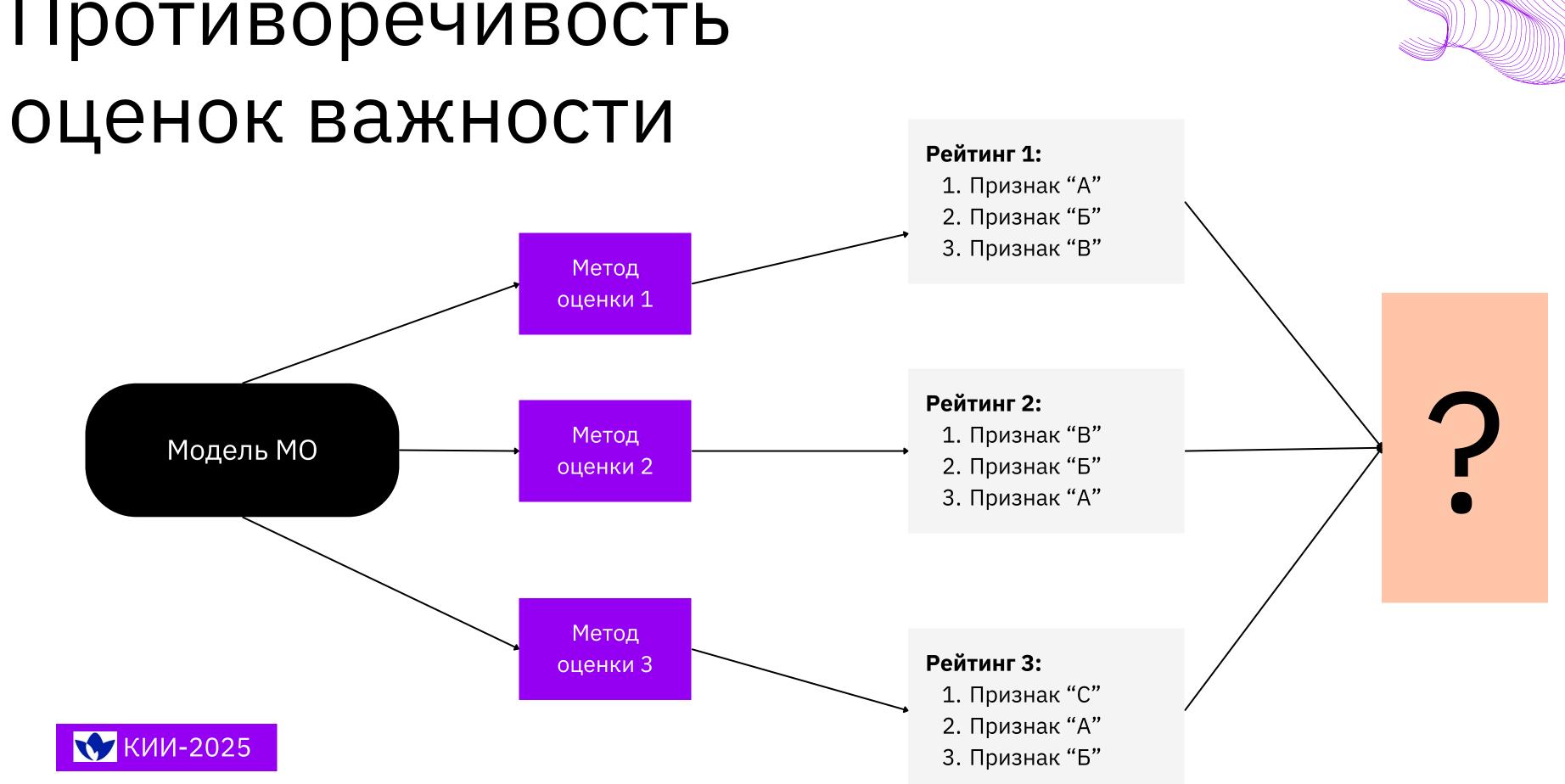
аспирант bvpotapenko@gmail.com

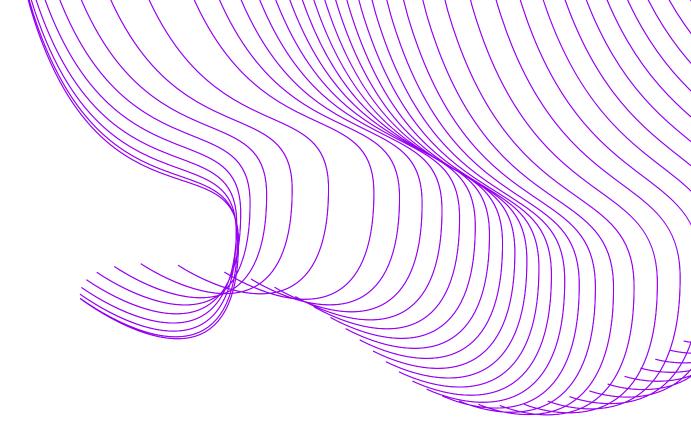
Можно ли доверять ИИ в клинической медицине?

Широкое применение ИИ

Системы поддержки принятия врачебных решений (СППВР) активно внедряются в здравоохранение

Черный ящик


Сложность моделей МО ограничивает их применимость.

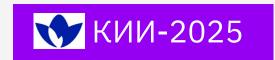


Потребность в объяснениях

Для клинической медицины критически важны объяснения решений, генерируемых моделями МО

Противоречивость

Материалы и методы


Датасет, предикторы и дизайн исследования

Датасет

Данные пациентов с инфарктом миокарда с подъемом сегмента ST (ИМпST) после операции чрескожного коронарного вмешательства (ЧКВ).

- Период: 2016 2022 гг.
- Объем выборки: 4668 пациентов.
- Целевая переменная:
 Внутригоспитальная летальность (ВГЛ) 313 случаев (6.7%).

Соотношение выживших пациентов и группы ВГЛ

Краевая клиническая больница №1 г. Владивостока

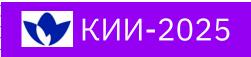
Методы оценки важности

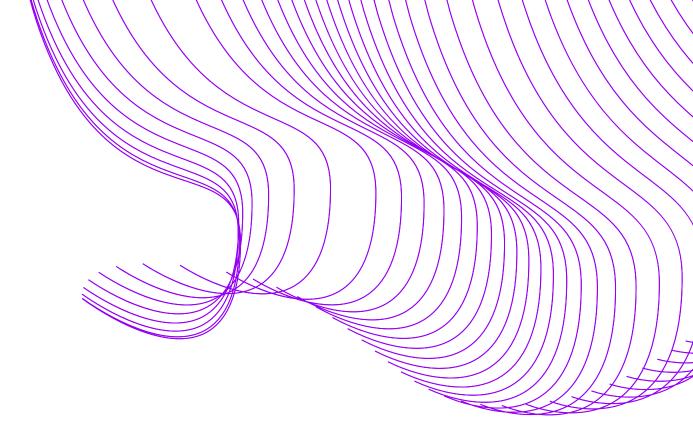
Статистические тесты


- t-тест Стьюдента
- U-тест Манна-Уитни
- χ2-тест

Модель-зависимые методы:

- Логистическая регрессия
- Случайный лес
- Градиентный бустинг (CatBoost, XGB)


Модель-независимые методы:


- Метод перестановок
- Метод аддитивного объяснения (SHAP)
- Собственный подход на оценке AUC

Качество моделей

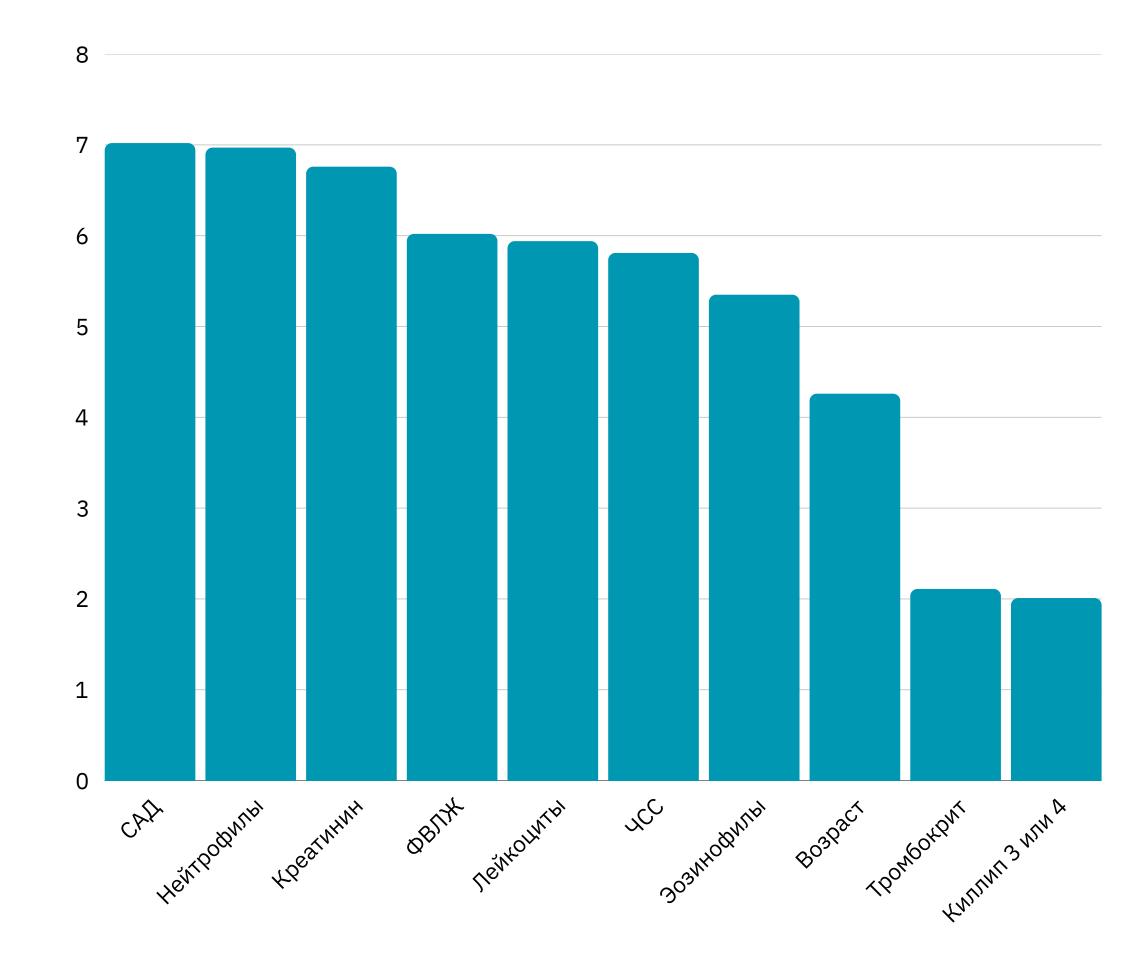
	Модель	ROC-AUC	Threshold	F2	F1	F0.5
1	Logistic Regression	0.89	0.64	0.56	0.39	0.31
2	Random Forest	0.89	0.36	0.48	0.29	0.21
3	CatBoost	0.87	0.69	0.53	0.41	0.34
4	XGBoost	0.88	0.41	0.48	0.29	0.22
5	Neural Network	0.86	0.55	0.57	0.41	0.32

Результаты

Сравнение рангов важности предикторов

Статистики межгрупповых сравнений статистическими тестами

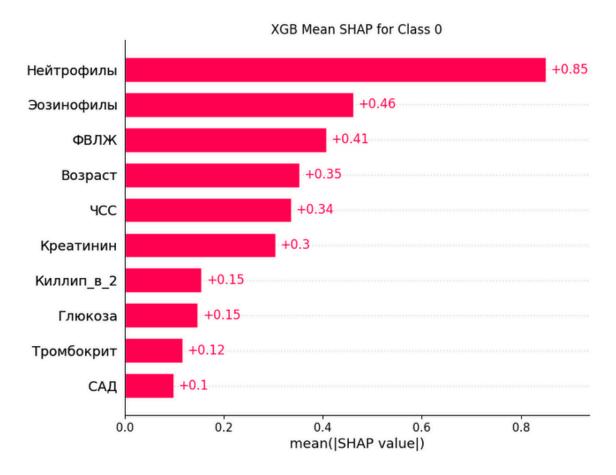
Относительные ранги t-test и Utest были получены с помощью min-max нормализации.

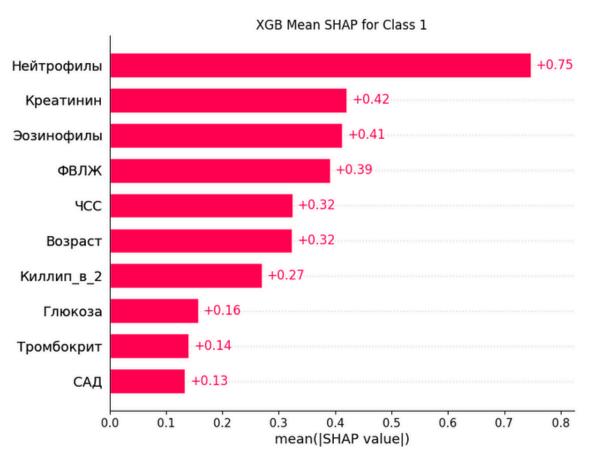

Предикторы	т-test rank t-test p-value		U-test rank (effect size r)	U-test p-value
Возраст	0.57	2.676e-37	0.72	6.271E-35
ЧСС	0.77	7.162e-55	0.68	5.567E-32
САД	0.84	1.516e-61	0.75	2.342E-37
Креатинин	1.00	9.353e-79	0.72	1.532E-34
ФВЛЖ	0.85	4.705e-63	0.74	5.185E-35
Лейкоциты	0.89	1.759e-66	0.70	4.184E-33
Нейтрофилы	0.84	4.162e-61	1.00	2.622E-55
Эозинофилы	0.30	6.130e-19	0.88	1.082E-44
Тромбокрит	0.00	5.603e-06	0.00	5.707E-03

Для категориального признака ("Киллип 3 или 4") вычислили значения χ^2 :

p-value =**5.699e-80**

Коэффициенты однофакторной логистической регрессии


Многофакторные модели машинного обучения


Для обеспечения сопоставимости между моделями значения важности признаков были нормализованы в диапазон [0;1] с помощью min-max преобразования

Продикторы	Отно	сительная вах	жность для мо	жав О.045 О.088 О.088	
Предикторы	MLR	RF	СВ	XGB	
Возраст	0.278	0.197	0.634	0.045	
Киллип 3 или 4	0	0.111	0.136	0.287	
ЧСС	0.304	0.14	0.248	0.003	
САД	0.183	0.05	0	0	
Креатинин	1	0.518	0.441	0.088	
ФВЛЖ	0.379	0.47	0.49	0.267	
Лейкоциты	0.239	0.143	0.065	0.019	
Нейтрофилы	0.374	1	1	1	
Эозинофилы	0.178	0.782	0.873	0.377	
Тромбокрит	0.227	0	0.009	0.008	

Глобальная оценка SHAP для положительного класса

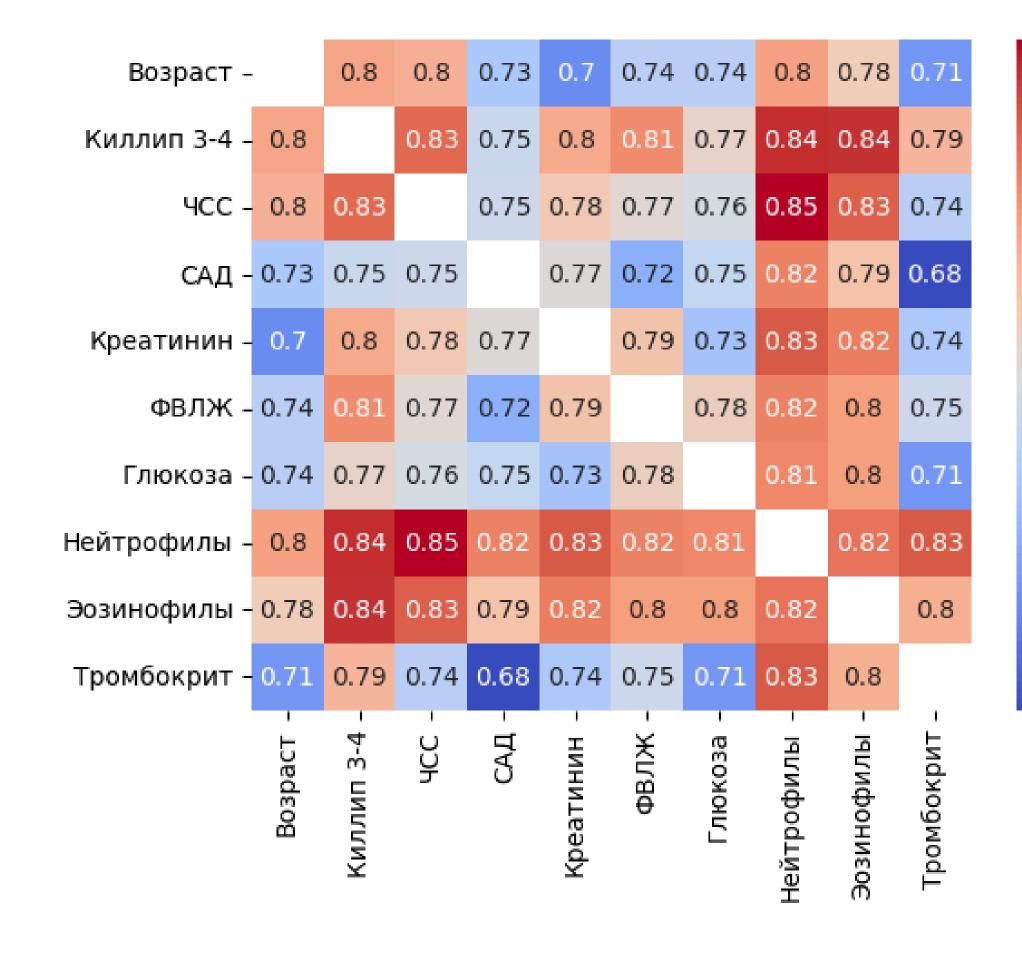
Предикторы	MLR	RF	СВ	XGB	NN
Возраст	0.52	0.04	0.35	0.32	0.06
Киллип 3 или 4	0.32	0.04	0.35	0.27	0.03
чсс	0.61	0.04	0.39	0.32	0.03
САД	0.24	0.02	0.14	0.13	0.02
Креатинин	0.38	0.07	0.46	0.42	0.01
ФВЛЖ	0.64	0.06	0.48	0.39	0.02
Лейкоциты	0.29	0.03	0.18	0.16	0.04
Нейтрофилы	0.72	0.11	0.54	0.75	0.12
Эозинофилы	0.13	0.09	0.41	0.41	0.13
Тромбокрит	0.24	0.01	0.13	0.14	0.01

Важность на основе метода перестановок

На оценке изменения метрики ROC-AUC

Предикторы	MLR	RF	СВ	XGB	NN
Возраст	0.03	0.014	0.02	0.023	0.035
Киллип 3 или 4	0.001	0.004	0.001	0.001	0.002
ЧСС	0.022	0.016	0.02	0.017	0.035
САД	0.005	0.003	0.004	0.002	0
Креатинин	0.016	0.022	0.02	0.014	0.019
ФВЛЖ	0.011	0.009	0.011	0.014	0.021
Лейкоциты	0.01	0.006	0.003	0.002	0.022
Нейтрофилы	0.026	0.037	0.024	0.057	0.1
Эозинофилы	0.004	0.023	0.015	0.023	0.079
Тромбокрит	0.001	0	-0.001	0	-0.003

Важность на основе оценки изменения AUC


				9 приз	внаков	•	2 признака	a.		
Γ	Признак		База 10 AUC	Без признак а	10-9 дельта	Срдн. с прзн.	Срдн. без	Дельта	Итог сумма	
•	1	Возраст		0.873	-0.0019	0.756	0.785	-0.029	-0.0309	
	2	Киллип_в_2		0.871	0.0001	0.804	0.773	0.031	0.0311	
	3	чсс		0.864	0.0071	0.789	0.777	0.012	0.0191	
	4	САД		0.872	-0.0009	0.751	0.787	-0.036	-0.0369	
	5	Креатинин	0.071	0.865	0.0061	0.773	0.781	-0.008	-0.0019	
	6	ФВЛЖ	0.871	0.883	-0.0119	0.775	0.781	-0.005	-0.0169	
	7	Глюкоза		0.875	-0.0039	0.762	0.784	-0.022	-0.0259	
	8	Нейтрофилы		0.877	-0.0059	0.825	0.768	0.057	0.0511	
	9	Эозинофилы		0.859	0.0121	0.809	0.772	0.037	0.0491	
1	.0	Тромбокрит		0.873	-0.0019	0.75	0.787	-0.037	-0.0389	

Оценка AUC на комбинациях признаков для модели CatBoost

Важность на основе оценки изменения AUC

Оценка AUC на парах признаков для модели CatBoost

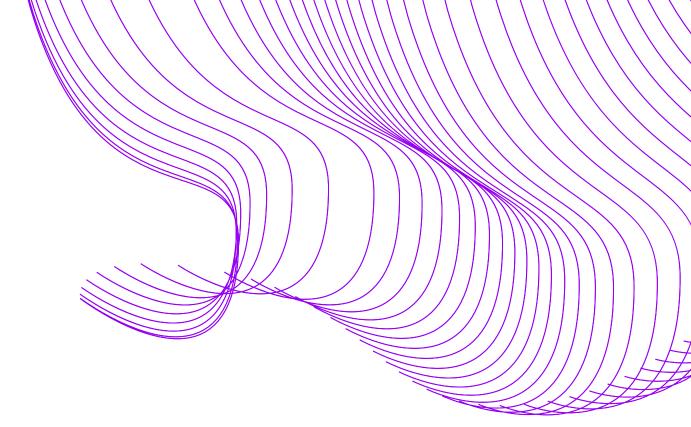
0.84

- 0.82

- 0.80

- 0.78

- 0.76


- 0.74

0.72

0.70

0.68

Обсужджение

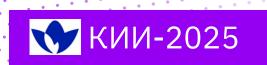
Сравнение рангов важности предикторов

Обобщенный ранг важности предикторов + AUC

Предикторы	Стат.	LR	MLR	Ансамбли (RF/CB/XGB)	SHAP (RF/CB/XGB)	Перестан овки (XGB)	AUC МЛР	AUC CB
Возраст	8	8	5	5/ 3 /6	5/6/6	3	7	8
Киллип 3 или 4	1	10	10	8/7/ 3	6/7/7	9	2	3
ЧСС	7	5	4	7/6/9	7/5/5	4	3	4
САД	5	1	8	9/10/10	9/9/10	7	9	9
Креатинин	2	3	1	3 /5/5	3/3/2	5	4	5
ФВЛЖ	4	6	2	4/4/4	4/2/4	6	6	6
Лейкоциты	3	4	6	6/8/7	8/8/8	8	8	7
Нейтрофилы	6	2	3	1/1/1	1/1/1	1	1	1
Эозинофилы	9	7	9	2/2/2	2/4/3	2	5	2
Тромбокрит	10	9	7	10/9/8	10 / 10 / 9	10	10	10

Руководитель

ШАХГЕЛЬДЯН К.И., д-р техн. наук, профессор,


carinashakh@gmail.com

Аспирант

ПОТАПЕНКО Б.В.

<u>bvpotapenko@gmail.com</u>

Спасибо!

