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Abstract—The aim of this study was to develop an explainable machine learning model for predicting in-hos-
pital mortality (IHF) in patients with ST-elevation myocardial infarction (STEMI) after percutaneous coro-
nary intervention (PCI). We analyzed data from 4681 electronic medical records of patients with STEMI and
identified 12 risk factors for IHF. The predictive models were developed based on multivariate logistic regres-
sion, random forest, and stochastic gradient boosting methods. The search for threshold values on the grid
while maximizing the area under the ROC-curve and their validation by Shapley’s additive explanation
method made it possible to verify the risk factors for IHF. The model, whose parameters were risk factors,
was superior in accuracy to the best model with continuous predictors based on stochastic gradient boosting.
The use of IHF risk factors as predictors makes it possible to explain the obtained prognosis and reduce the
risk of adverse events after PCI.
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1. INTRODUCTION

Cardiovascular diseases persist as a paramount
public health issue across the globe [17]. Among these,
ischemic heart disease (IHD) commands a significant
portion of cardiovascular mortality, being responsible
for 20% of all such deaths [9]. ST-elevation myocardial
infarction (STEMI) is one of the most critical clinical
manifestations of IHD. One of the most effective ther-
apeutic interventions for STEMI is myocardial revas-
cularization via percutaneous coronary intervention
(PCI), which necessitates timely administration fol-
lowing the onset of symptoms. Despite enhancements
in PCI technologies, the in-hospital mortality (IHM)
rates post-procedure continue to be substantial, fluc-
tuating between 4 and 7%.

In the realm of clinical practice, a variety of scoring
systems are utilized to stratify the risk of IHM among
patients based on clinical presentations, diagnostic
findings, and laboratory results. Prominent among
these risk assessment tools are the TIMI, GRACE,
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PAMI, and CADILLAC scales [2, 7, 10, 21, 22]. The
application of these metrics facilitates the determina-
tion of the most efficacious therapeutic strategies,
thereby optimizing clinical outcomes. The GRACE
scale (Global Registry of Acute Coronary Events),
developed through Cox regression analysis, is pre-
dominantly employed and has been the subject of
extensive research aimed at its enhancement in recent
years [3, 4, 14, 19, 24]. To refine the predictive accu-
racy of models based on this scale, their framework is
often expanded with new variables. Concurrently, the
employment of more sophisticated machine learning
algorithms, such as random forests (RF) and stochas-
tic gradient boosting (SGB), has become more preva-
lent, offering improved performance metrics for these
models [13]. Nevertheless, the integration of novel
predictors frequently lacks comprehensive explana-
tions and evaluations of their influence on the clinical
endpoints, thus constraining their practical utility.

The goal of this study was to perform a meticulous
analysis of the dataset describing the conditions of
patients with STEMI treated with PCI, to identify
novel predictors of adverse events, assess their predic-
tive capacity, and develop multifactorial models for
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forecasting IHM. This includes a detailed evaluation
of the influence exerted by individual predictors on
the outcome.

2. MATERIALS AND METHODS
2.1. Data

This study entails a retrospective analysis of data
extracted from 4681 patient medical records. These
patients underwent treatment at the Regional Vascular
Center of the Primorsky Regional Clinical Hospital
No. 1, Vladivostok, from 2015 to 2021. On the first day
of hospital admission, all patients received invasive
coronary angiography followed by transluminal bal-
loon angioplasty and stenting of the arteries impli-
cated in the myocardial infarction. Data extraction
was performed from the DOCA+ medical information
system by parsing html-files, culminating in a com-
prehensive dataset. The cohort consisted of 3207
males and 1474 females, with a median age of 63 years.
Patients were classified into two groups: 318 individu-
als (6.8%) who succumbed to in-hospital mortality
and 4363 individuals (93.2%) who survived post per-
cutaneous coronary intervention (PCI).

Clinical and functional status were assessed on the
first day of hospitalization, utilizing 136 variables. The
analyzed data encompassed demographic and histori-
cal information, clinical blood analysis results, serum
creatinine concentration (Cr), glomerular filtration
rate (GFR), neutrophil and eosinophil counts, the
international normalized ratio (INR), thrombin time
(TT), prothrombin index (PTI), activated partial
thromboplastin time (aPTT), and fibrinogen level
(Fg). Echocardiographic assessments were conducted
to determine the transverse (LA1l) and longitudinal
(LA2) dimensions of both the left and right atria (RA1
and RA2), the end-systolic (ESD) and end-diastolic
(EDD) dimensions of the left ventricle (LV), and the
left ventricular ejection fraction (EF) using the Teich-
holz method. The primary endpoint was defined as
the in-hospital mortality (IHM) rate post-PCI, cate-
gorized as a binary variable indicating either the
“absence” or “development” of mortality.

Due to the urgent nature of hospital admissions for
patients with ST-elevation myocardial infarction
(STEMI), the majority of laboratory tests were con-
ducted immediately post-PCI. To substantiate the
hypothesis that these data could serve as valid preop-
erative indicators, we conducted statistical tests com-
paring dependent samples across the dataset and
revealed no significant differences in samples with
both pre- and post-PCI data. Missing values within
the dataset were not replaced with synthetic data to
preserve the integrity of the original clinical data.
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2.2. Data Selection and Risk Factor Determination

The process of selecting predictors and determin-
ing risk factors unfolded across five methodical stages.
Initially, intergroup comparison tests between two
cohorts, that is, deceased and surviving patients fol-
lowing percutaneous coronary intervention (PCI)
with ST-elevation myocardial infarction (STEMI),
facilitated the compilation of a list of potential predic-
tors. The inclusion criterion was established at a
p-value threshold of <0.05. Subsequently, the second
stage involved quantifying the impact of these isolated
potential predictors on the clinical endpoint (refer to
Table 2). This was achieved by assessing the weight
coefficients derived from univariate logistic regression
models applied to normalized datasets. The definitive
ensemble of predictors underwent validation within
multivariate models. These models were iteratively
refined by sequentially incorporating factors with the
highest weight coefficients from the univariate logistic
regression analysis, followed by a meticulous assess-
ment of the integrity of the resulting model. The prog-
nostic validity of each predictor was corroborated if its
inclusion resulted in an enhancement of the area
under the receiver operating characteristic curve
(AUCQ).

In the penultimate stage, variables that comprised
the optimal prognostic model were converted into risk
factors for IHM. These risk factors were identified by
isolating unique values of the variables and were deter-
mined using four distinct methods: the maximum
odds ratio, the minimum p-value ascertained through
the y2 test, the greatest value of AUC in the univariate
logistic regression model, and centroid determination
[18]. Comparative analyses were conducted against
diagrams of SHAP values to corroborate these find-
ings.

2.3. Development of Predictive Models

The foundational model employed was the
GRACE scale, which incorporates five principal pre-
dictors: patient age, acute heart failure classification
according to Killip, heart rate, serum creatinine levels,
and systolic blood pressure [7]. Two other predictors
within the GRACE framework, that is, cardiac arrest
upon patient admission and significant elevations in
cardio-specific enzymes, were excluded due to their
lack of variability in the analyzed sample. The predic-
tor of “ST-segment deviation” on the electrocardio-
gram was considered for all patients with STEMI,
attributing 28 points to this parameter. Each predictor
within the GRACE scale was segmented into ranges
linked to defined risk levels and corresponding scores.
The aggregate score was interpreted as denoting low
(less than 126 points), moderate (126 to 154 points),
and high (more than 154 points) IHM risk [5]. The
primary analytical model was a univariate logistic
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regression, where the sole predictor was the cumula-
tive score of the GRACE scale.

In this investigation, models were constructed
using three advanced algorithms: multivariate logistic
regression (MLR), random forest (RF), and stochas-
tic gradient boosting (SGB). The dataset was bifur-
cated into a training and cross-validation subset (80%)
and a final testing subset (20%). The training and
cross-validation process was implemented through the
stratified k-fold technique across 10 folds. Aggregated
metrics of AUC, sensitivity (Sen), and specificity (Sp)
were employed to identify the superior model, facili-
tating the adjustment of predictors and hyperparame-
ters. The threshold for determining sensitivity and
specificity was identified by seeking an equilibrium
between these metrics. For RF and SGB models,
hyperparameters were optimized through an exhaus-
tive grid search methodology. The concluding testing
phase involved educating the models with optimal
configurations on the primary subset (80%) and eval-
uating them on the secondary subset (20%).

The final phase of the research culminated in the
establishment of an MLR predictive model utilizing
the corroborated risk factors.

2.4. Statistical Analysis Methods

In this study, conformity to a normal distribution
was assessed utilizing the Shapiro—Wilk test. Due to
the non-normal distribution of the data, nonparamet-
ric statistical methods were employed, including inter-
group comparison tests. Metrics were presented as
median values (Me) and their 95% confidence inter-
vals (95% CI) for continuous variables, and as fre-
quencies for categorical variables. The Mann—Whit-
ney test was utilized for continuous variables, while the
chi-squared (2) test was used for categorical vari-
ables. Odds ratios (OR) and their 95% CI were com-
puted using Fisher’s exact test. Models were devel-
oped using multiple logistic regression (MLR), ran-
dom forest (RF), and stochastic gradient boosting
(SGB) techniques. Model quality was evaluated based
on three metrics: area under the curve (AUC), sensi-
tivity (Sen), and specificity (Sp). To assess the impact
of predictors on the clinical endpoint, Shapley Addi-
tive Explanations (SHAP) were utilized. Analyses were
conducted in Python, open-source version 3.9.16.

3. RESULTS

3.1. Patient Cohort Characteristics
and Predictor Selection

The initial stages of analysis involved median and
frequency estimations, as well as intergroup compari-
son tests (Table 1). Table 1 presents the critical met-
rics.
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3.2. Model Training and Validation

For indicators exhibiting statistically significant
intergroup differences, we determined the weight
coefficients using univariate logistic regression (LR)
(Table 2). The GRACE score total serves as an indica-
tor of IHM, with increases associated with a higher
probability of adverse outcomes postpercutaneous
coronary intervention (PCI). Similar relationships
with IHM were noted for the levels of neutrophils, cre-
atinine, heart rate, white blood cells, pulmonary artery
systolic pressure, patient age, glucose, and class of
acute heart failure, among others. For predictors such
as systolic blood pressure (SBP), diastolic blood pres-
sure (DBP), left ventricular ejection fraction (LVEF),
prothrombin index, eosinophils, and hemoglobin, an
inverse relationship was observed: higher values of
these variables were associated with a higher probabil -
ity of favorable PCI outcomes.

In addition to the baseline univariate LR model
based on the total GRACE score, we developed mod-
els using multivariate logistic regression (MLR), ran-
dom forest (RF), and stochastic gradient boosting
(SGB) with five factors from the GRACE scale
(Table 3). The best results were achieved by expanding
the spectrum of predictors to include LVEF, PASP,
hemoglobin, hematocrit, relative levels of neutrophils
and eosinophils, and patient height. Data analysis
demonstrated a consistent improvement in the quality
of prognosis for the three types of models (MLR, RF,
and SGB) both during cross-validation and final test-
ing. The RF and SGB models exhibited superior prog-
nostic properties compared to MLR, with AUCs of
0.901 and 0.903 versus 0.899, respectively.

3.3. Risk Factors

Identification of risk factors for IHM was per-
formed using a grid search method to find the optimal
solution. The optimal solution was determined using
several objective functions: the maximum odds ratio
(OR) or area under the curve (AUC), the minimum p-
value, and centroid calculation [18]. Threshold values
with the highest predictive potential were determined
for the following parameters: age, Killip class, heart
rate, creatinine, systolic arterial pressure, left ventric-
ular ejection fraction, lactate dehydrogenase, hemo-
globin, plateletcrit, relative neutrophil count, and rel-
ative eosinophil count. These threshold values were
then classified as risk factors (Table 4). A risk factor is
assigned a value of “1” if the predictor value exceeds
the threshold with a “+” postfix, or falls below it with
a “—” postfix. In cases where the indicator has a value
of “0,” it is not considered a risk factor (Table 4).

The risk factors for IHM derived through objective
function optimization were ascertained by evaluating
the isolated impact of each predictor on the primary
endpoint. However, the threshold values for these fac-
tors may shift when considering their combined influ-
Vol. 34
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Table 1. The clinical and functional characteristics of patients
Predictor Group 1 (n = 318) Group 2 (n = 4363) OR (95%) CI p-value

Gender: F, abs. (%) 142 (44.65%) 1332 (30.5%) 1.8 [1.5; 2.3] <0.000001
Age, years 71 [70; 72] 62 [62; 62] — <0.000001
Height, cm 168 [167; 169] 170 [169.8; 170.3] — 0.000001
Weight, kg 78 [76; 80] 80 [79.5; 80.5] — 0.000005
BMI, kg/m? 26.8 [26.2; 27.4] 27.7 [27.5; 27.8] — 0.039489
SBP, mm Hg 110 [106; 114] 130 [129; 131] - <0.000001
DBP, mm Hg 72 [69.9; 74.1] 80 [79.6; 80.4] - <0.000001
Heart rate, bpm 86 [83.3; 88.7] 72 [71.6; 72.4] - <0.000001
Creatinine, umol/L 130 [115; 144] 97 [95.7; 98.2] — <0.000001
Killip class

| 71 (22.33) 2745 (62.5%) 0.210.13; 0.22] <0.000001
11 58 (18.2%) 870 (20%) 0.9 [0.67; 1.20] 0.508052
111 66 (20.75%) 479 (11%) 2.11.59; 2.8] <0.000001
v 123 (38.7%) 269 (6.17%) 9.6 [7.4; 12.4] <0.000001
GRACE score 203 [197; 211] 147 [147; 149] — <0.000001
LVEF, % 46.5 [44.7; 48.3] 56 [55.7; 56.3] — <0.000001
LVEDD, cm 514.9; 5.1] 514.98; 5.02] — 0.356921
LVESD, cm 3.7 [3.6;3.8] 3.4[3.38;3.42] - <0.000001
PASP, mm Hg 35[33.1;36.9] 28 [27.8; 28.2] - <0.000001
LA, cm 4.10 [4.02; 4.18] 3.90 [3.89; 3.91] — <0.000001
LA2, cm 5.20 [5.09; 5.31] 4.90 [4.88; 4.92] - <0.000001
RAI1, cm 3.80 [3.71; 3.89] 3.60 [3.59; 3.61] — <0.000001
RA2, cm 4.80 [4.70; 4.90] 4.70 [4.68; 4.72] — 0.00004
RBC, 1012/L 4.251[3.96; 4.53] 4.48 [4.46; 4.50] - <0.000001
Hb, g/L 132 [129; 135] 141 [140; 142] - <0.000001
PLT, 109/L 228 [215; 241] 221 [219; 223] — 0.020104
Neutrophils, % 81.3[79.9; 82.7] 66.7 [66.4; 67.1] - <0.000001
Eosinophils, % 0.1 [-0.02; 0.22] 0.90 [0.85; 0.95] - <0.000001
Glu, mmol/L 7.95[6.89; 9.01] 5.79 [5.71; 5.87] - <0.000001
Urea, umol/L 12.12 [7.8; 16.5] 6.7 [6.38; 7.02] - <0.000001
Plateletcrit, % 0.2210.21;0.23] 0.20[0.20; 0.20] — 0.0012
WBC, 109/L 14 [13.2; 14.8] 10.510.3; 10.6] — <0.000001
PT, % 75.5172.2; 78.8] 89.3 [88.8; 89.9] - <0.000001
INR, units 1.26 [1.10; 1.42] 1.06 [1.05; 1.07] - <0.000001
TT, s 21.9 [21.3; 23.3] 21.4 [21.3; 21.7] — 0.012
aPTT, s 39.7 [32.9; 46.5] 36.5[35.1; 37.9] — 0.000026
Anterior M1, abs. (%) 177 (55.66%) 2023 (46.37%) 1.5 [1.15; 1.83] 0.001647
Atrial fibr., abs. (%) 129 (40.57%) 772 (17.69%) 3.2 [2.51;4.02] <0.000001
Type 2 diabetes, abs. (%) 99 (31.13%) 831 (19.05%) 1.9 [1.50; 2.46] <0.000001
CKD, abs. (%) 83 (26.1%) 677 (15.5%) 1.97 [1.5; 2.6] <0.000001

LVEF, left ventricular ejection fraction; LVEDD, left ventricular end-diastolic dimension; LVESD, left ventricular end-systolic dimen-
sion; PASP, pulmonary artery systolic pressure; LA2, longitudinal dimension of the left atrium; RAI, transverse dimension of the right
atrium; RA2, longitudinal dimension of the right atrium; RBC, red blood cells; Hb, hemoglobin; PLT, thrombocytes; Glu, glucose;
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; WBC, white blood cells; PT, pro-
thrombin time; INR, international normalized ratio; TT, thrombin time; aPTT, activated partial thromboplastin time; Cr, creatinine;
AF, atrial fibrillation; T2D, type 2 diabetes; CKD, chronic kidney disease.
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Table 2. Weight coefficients in univariate logistic regression models

Predictor Coefficient p-value
GRACE score total 7.507 [7.503; 7.511] <0.000001
Neutrophils (relative value) 6.485 [6.481; 6.489] <0.000001
SBP —6.280 [—6.283; —6.277] <0.000001
DBP —6.226 [—6.228; —6.224] <0.000001
Cr 6.102 [6.100; 6.103] <0.000001
Heart Rate 5.573 [5.570; 5.575] <0.000001
Lymphocytes (relative value) —5.349 [—5.353; —5.345] <0.000001
LVEF —5.225 [-5.229; —5.221] <0.000001
WBC 5.067 [5.064; 5.070] <0.000001
SII 4.932[4.930; 4.934] <0.000001
PASP 4.639 [4.637; 4.642] <0.000001
Glu 4.385 [4.383; 4.386] <0.000001
Prothrombin Index —4.349 [—4.352; —4.345] <0.000001
Eosinophils (relative value) —4.206 [—4.208; —4.204] <0.000001
Age 4.171 [4.167; 4.176] <0.000001
INR 3.788 [3.786; 3.789] <0.000001
Killip class 3.583 [3.575; 3.590] <0.000001
PLR 3.133 [3.131; 3.136] <0.000001
Hb —3.088 [—3.091; —3.086] <0.000001
Lal 3.028 [3.026; 3.031] <0.000001
RDW-CV 2.990 [2.988; 2.992] <0.000001
Hematocrit —2.818 [—2.819; —2.816] <0.000001
Ral 2.705[2.702; 2.708] <0.000001
La2 2.583 [2.580; 2.586] <0.000001
Red blood cells —2.417 [—2.420; —2.414] <0.000001
Monocytes (absolute value) —2.396 [—2.400; —2.392] <0.000001
LVESD 2.268 [2.264; 2.271] <0.000001
Plateletcrit 2.063 [2.060; 2.065] <0.000001

ence on the resultant variable. To delineate threshold
values within a multifactorial model, the Shapley
Additive Explanations (SHAP) method was employed
to assess predictor importance. SHAP value plots were
generated for each predictor within the optimal
XGBoost multifactorial model (Fig. 1).

It is noteworthy that the risk factor thresholds
obtained through maximizing the AUC of univariate
logistic regression corresponded with the results of the
SHAP analysis. Specifically, SHAP values surpassing
0 indicated an elevated probability of IHM. As an
example, AUC maximization yielded a threshold
value of 75% for neutrophils as a risk factor, which was
associated with an 11-fold increase in IHM risk

PATTERN RECOGNITION AND IMAGE ANALYSIS

(Table 4). This threshold is further illustrated in Fig. 1,
where a sharp escalation in SHAP values exceeding 0
is observed when the blood neutrophil content sur-
passes 75%. Analogous correlations were observed for
other predictors.

Utilizing the risk factors derived from AUC maxi-
mization, a multifactorial IHM prediction model was
developed, which has cross-validated performance
metrics of AUC = 0.917, sensitivity = 0.821, and spec-
ificity = 0.854. In the final testing phase, the model
achieved AUC = 0.903, sensitivity = 0.775, and spec-
ificity = 0.851, demonstrating parity with the best
XGBoost model. The salient advantage of the risk fac-
Vol. 34
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Table 3. The performance metrics of predictive models
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Age, Height, Killip Class, HR, Cr, SAD, LVEF,
Age, Killip Class, Cr, SAD, HR SDLA, Hemoglobin (Hb), Hematocrit,
Neutrophils, and Eosinophils
MLR RF SGB MLR RF SGB
Cross-validation metrics on validation samples
AUC 0.855 0.853 0.859 0.915 0.919 0.915
Se 0.774 0.710 0.742 0.840 0.720 0.760
Sp 0.778 0.844 0.819 0.828 0.910 0.895
Performance metrics on final test sample

AUC 0.823 0.836 0.839 0.899 0.901 0.903
Se 0.711 0.711 0.689 0.771 0.686 0.714
Sp 0.772 0.836 0.831 0.846 0.899 0.896

tor-based model lies in its interpretability for clini-
cians.

The identified risk factors for IHM in post-PCI
STEMI patients include: blood neutrophil levels
exceeding 75.4% and eosinophil levels surpassing
0.3%; LVEF below 51%, blood hemoglobin levels
below 144 g/L; blood plateletcrit levels exceeding
0.22%, LDH exceeding 34 mm Hg; height below
173 cm, systolic arterial pressure below 112 mm Hg;
blood creatinine exceeding 123 umol/L, heart rate
exceeding 79 bpm; age surpassing 65 years; and Killip
class II1-1V.

4. DISCUSSION

This investigation used data mining techniques on
a patient dataset with ST-segment elevation myocar-
dial infarction (STEMI) postcardiac surgery. Our
objective was to uncover and authenticate new predic-
tors of IHM, to confirm fatal outcome risk factors,
and to engineer a prognostic model that not only
exceeds the precision of the well-established GRACE
model but also incorporates explanatory components.
The array of potential predictors encompassed five
metrics from the GRACE scale in addition to a spec-
trum of novel indicators not previously considered in
this predictive capacity. Ultilizing three sophisticated
machine learning algorithms, alongside rigorous
cross-validation and testing protocols, we substanti-
ated their prognostic relevance for IHM. The apex of
prediction accuracy was realized through the applica-
tion of the GBM model. Notably, all three methodol-
ogies, that is, multiple logistic regression, support vec-
tor machines, and GBM, demonstrated a progressive
enhancement in predictive performance during both
cross-validation and subsequent final evaluations.

PATTERN RECOGNITION AND IMAGE ANALYSIS

The application of the Shapley additive explana-
tions method found a significant impact exerted by the
newly discerned predictors on IHM, specifically high-
lighting LVEF, SPAP, neutrophil levels, eosinophils,
and thrombocrit (see Fig. 2). The impact magnitude
of hemoglobin on the endpoint paralleled that of
patient age, while the influence attributable to patient
height was minimal.

By employing the maximization of the AUC of a
unifactorial logistic regression, corroborated by results
from Shapley additive explanations, we delineated
predictor threshold values. Deviations from these
thresholds were designated as IHM risk factors. This
methodological approach facilitates real-time risk
assessment by clinicians, enabling prompt interven-
tion and adjustment of risk factors.

LVEF emerges as the predominant predictor aug-
menting the GRACE scale in influencing the end-
point, a finding corroborated by several other studies
[1,6, 11, 20, 23]. Although most literature cites a crit-
ical threshold of LVEF < 40%, our findings indicate a
heightened IHM risk commencing at LVEF < 50%.
The role of neutrophil levels exceeding 75%, although
not identified by other researchers, has been impli-
cated as a predictive factor of IHM in conjunction
with lymphocyte levels in numerous studies [16, 20].
An elevated SPAP above 35 mm Hg is similarly recog-
nized as a risk factor [8]. The interrelation between
platelet volume, hemoglobin levels, and IHM has
been a subject of discussion in the literature [15, 20,
23]. The factor with the least contribution to IHM
prediction identified in this study is patient height; our
analysis confirms that a stature less than 173 cm is a
risk factor for IHM among patients with STEMI fol-
lowing cardiac surgery. The prognostic potential of
this parameter in relation to cardiovascular disease
progression is currently under vigorous investigation
[12].
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Table 4. Identification of IHM risk factors using different methods
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Predictor Method g:;iiggli p-value OR (95% CI) AUC
Neutrophils max(OR) 94.2+ <0.00001 23.01 [4.6; 114.8] 0.513
min(p-value) 78.8+ <0.00001 9.12 [6.63; 12.53] 0.730

max( AUC) 75.4+ <0.00001 11.28 [7.83; 16.2] 0.774

Centroid 74.0+ <0.00001 9.92 [6.86; 14.36] 0.751

Eosinophils max(OR) 1.3— <0.00001 9.79 [5.3; 18.08] 0.666
min(p-value) 0.3— <0.00001 7.87 [5.62; 11.03] 0.741

max(AUC) 0.3— <0.00001 7.87 [5.62; 11.1] 0.741

Centroid 0.5— <0.00001 7.630 [5.239; 11.112] 0.722

LVEF max(OR) 31.0— <0.00001 19.693 [12.08; 32.11] 0.514
min(p-value) 31.0— <0.00001 19.693 [12.08; 32.11] 0.594

max(AUC) 51.0— <0.00001 4.850[3.504; 6.712] 0.690

Centroid 51.25— <0.00001 4.885[3.514; 6.792] 0.683

Hemoglobin max(OR) 94.0— <0.00001 5.304 [3.278; 8.582] 0.540
min(p-value) 94.0— <0.00001 5.304 [3.278; 8.582] 0.541

max(AUC) 144.0— <0.00001 2.285[1.703; 3.068] 0.614

Centroid 136.5— <0.00001 2.250[1.728; 2.928] 0.585

Plateletcrit max(OR) 0.36+ <0.00001 4.490 [2.743; 7.350] 0.500
min(p-value) 0.36+ <0.00001 4.490 [2.743; 7.350] 0.524

max(AUC) 0.22+ 0.00002 1.816 [1.379; 2.391] 0.598

Centroid 0.21+ 0.0009 1.629 [1.238; 2.144] 0.576

LDH max(OR) 34.0+ <0.00001 6.401 [4.680; 8.753] 0.500
min(p-value) 34.0+ <0.00001 6.401 [4.680; 8.753] 0.728

max( AUC) 34.0+ <0.00001 6.401 [4.680; 8.753] 0.728

Centroid 31.5+ <0.00001 5.902 [4.298; 8.103] 0.701

Height max(OR) 152.0— 0.00003 4.174 [2.118; 8.228] 0.513
min(p-value) 173.0— <0.00001 1.890 [1.451; 2.464] 0.594

max(AUC) 173.0— <0.00001 1.890 [1.451; 2.464] 0.594

Centroid 169.0— 0.00004 1.667 [1.307; 2.126] 0.559

SAP max(OR) 60.0— <0.00001 31.538 [10.89; 91.35] 0.523
min(p-value) 92.0— <0.00001 11.014 [8.28; 14.65] 0.613

max(AUC) 112.0— <0.00001 5.361 [4.237; 6.783] 0.685

Centroid 120.0— <0.00001 4.777 [3.781; 6.035] 0.676

Creatinine max(OR) 427.0+ <0.00001 30.523 [10.16; 91.74] 0.518
min(p-value) 188.6+ <0.00001 13.054 [9.44; 18.04] 0.625

max(AUC) 122.9+ <0.00001 5.774 [4.477; 7.448] 0.701

Centroid 113.3+ <0.00001 4.605 [3.559; 5.960] 0.693

HR max(OR) 150.0+ <0.00001 41.635 [4.32;401.42] 0.500
min(p-value) 94.0+ <0.00001 6.225[4.860; 7.972] 0.663

max(AUC) 79.0+ <0.00001 4.019 [3.170; 5.096] 0.672

Centroid 79.0+ <0.00001 4.019 [3.170; 5.096] 0.672
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Table 4. (Contd.)
Predictor Method Threshold p-value OR (95% CI) AUC
pen_spark
Age max(OR) 85.0+ <0.00001 6.194 [3.407; 11.264] 0,513
min(p-value) 70.0+ <0.00001 4.109 [3.259; 5.181] 0.644
max(AUC) 65.0+ <0.00001 3.73512.923; 4.772] 0.667
Centroid 66.5+ <0.00001 3.646 [2.872; 4.628] 0.660
Killip class max(OR) 3.0+ <0.00001 9.600 [7.423; 12.416] 0.665
min(p-value) 3.0+ <0.00001 9.600 [7.423; 12.416] 0.665
max(AUC) 2.0+ <0.00001 7.081 [5.585; 8.977] 0.714
Centroid 2.0+ <0.00001 7.081 [5.585; 8.977] 0.714
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Fig. 1. The influence of predictors in the multifactorial model on IHM.
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Fig. 2. Chart of SHAP values by GBM model.

Figure 2 displays a graphical representation of
SHAP values, illustrating the significance of predic-
tors that constitute the optimal GBM model. As indi-
cated, elevated parameters such as creatinine, heart
rate, neutrophils, SPAP, thrombocrit, and age are
associated with an increased probability of mortality
postsurgery in patients with STEMI. Additionally, it is
pertinent to highlight that an increase in the severity of
heart failure, as classified by T.Killip, precipitates a
substantial increase in the probability of IHM. Con-
versely, increases in LVEF, eosinophil counts, hemo-
globin levels, as well as patient height and systolic arte-
rial pressure, inversely affect the endpoint: with an
increase of these variables, the likelihood of mortality
diminishes.

The precision of the prognostic model developed
herein, which incorporates these IHM risk factors,
notably surpasses outcomes documented by previous
researchers [13, 20].

CONCLUSIONS

In the present study we delineated and validated
risk factors for IHM among patients experiencing
STEMI who underwent cardiac surgery. The prognos-

PATTERN RECOGNITION AND IMAGE ANALYSIS

tic model formulated on the basis of these identified
factors exhibited enhanced predictive capabilities
when contrasted with the traditional GRACE model
and other models advanced by fellow researchers.
Employing these IHM risk factors as predictors in the
model not only promotes computational transparency
but also empowers clinicians to promptly enact inter-
ventions aimed at mitigating the risk of fatal outcomes.

The advancement of this research necessitates an
expansion of the existing dataset and the exploration
of novel predictors for in-hospital mortality, thereby
broadening the scope and applicability of our findings
in clinical settings.
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