
ROME_IF

TheROME_IFmoduleis ashared library providing anAPI for theStandard messagesetandsupport for message-
passingin a STREAMS environment.

Data Definitions

rome_if.h contains thefoll owing typedefinitions:

queue_t ThestandardSTREAMS structurerepresenting aqueueof mblksbe-
tweenstreams modules. In the ROME implementation it contains
pointersto theupstreamprocess,src, thecurrent process,me, andthe
downstreamprocess’file handle, dest. Thestructurealsocontainsa
queue of oustanding readrequests,reads, anda pointer to the local
(per-process)context for thequeueq_ptr.

ROME_HANDLERS Thestructureusedby thegeneric messagedispatchingroutinerome_generic_handler
to processmessages. It associates a message operationcodeopcode
with a handler routine.

ROME_MQUEUE A generic message queuecontaining a headandtail pointer.

ROME_URL The parsed form derived from a string URL in ROME format. The
schemeis usedto contain thedestination processname.Theoptional
local port usually selects aparticular protocol within thedestination.
Theuserandpassword fieldsidentify andauthenticatetheopenedfile
at thedestination. For networkedconnectionsthehostfield contains
the string form of the destination hostname,while the ipaddr fields
contains its 32-bit network address. The ip_port field contains the
remoteport number, andthe urlpath field containsthe remainder of
theURL asanunparsedstring.

Shared Library Macrosand Routines

rome_addhead

(void) rome_addhead(
ROME_MQ UEUE *_q,
ROME_MESSAGE *_m)

1



ROME_IF

The rome_addhead macroadds themessage_m to thefront of thequeue _q. No interlocksaretaken
out by themacro,it is thecaller’s responsibility to usethemacrowithin a critical section if thequeue
is a shareddatastructure.

rome_addtail

(void) rome_addtail(
ROME_MQ UEUE *_q,
ROME_MESSAGE *_m)

Therome_addtail macroaddsthemessage_m to theendof thequeue_q. No interlocksaretakenout
by themacro,it is thecaller’s responsibility to usethemacrowithin a critical section if thequeueis a
shared datastructure.

rome_fetmblk

void rome_fetmblk(
FILE *stream,
ROME_MESSAGE *msg)

The rome_fetmblkroutine formatsthe supplied message asa FETMBLK request andsendsit to the
destinationprocessspecified by the(open)FILE stream. Theroutine does not wait for thereply.

rome_fopen

FILE * rome_fopen(
ROME_URL *fileurl ,
constchar *mode,
int ix)

Therome_fopenroutine formatsandsendsanOPENmessageusingtheparsedstructurepointedto by
url parameter. Thedestinationprocessis takenfrom theschemefield. Themodeparameter is used to
setthemodeflagsin theOPENmessage. Theroutine handlestheEAGAIN return from filing system
requests, indicatinga symbolic link, by repeating the OPEN to the new destination. If the request
eventually succeedsa FILE structure is allocated, and the file-table entry at index ix in the current
process is initialised to contain this structure,which is also returnedto the caller. If any of the the
OPENrequestsfail, NULL is returned.
Therome_fopenroutineis notnormally calleddirectly from applicationcode,either fopenor rome_open_url
should beused,asthey take careof maintainingtheper-processfilesystemtables.This routine canbe
usedto openanexplicit file index, for exampleto ensurethatstdin is at index 0 in thefile table.

rome_generic_handler

void rome_generic_handler(
ROME_MESSAGE *mptr,
ROME_HAN DLERS * list,
int listc)

The rome_generic_handler routine provides a general-purposemessagedemultiplexing routine for
mostprocesses. It matches theoperationcodein thesupplied message,mptr, with oneof thecodes in

2



ROME_IF

the list of handlers,list, andcalls theroutine associatedwith thatcode. listc is thenumber of entries
in thelist.
The routine usesrome_kprintf to print an error if the messagecannot be handled, and attempts to
return themessageto theoriginatorasa reply. To prevent infinite system loops, the routine doesnot
attemptto return messagesthatarealready markedwith the‘reply’ flag,discarding them instead.This
mayeventually cause thesystemto freeze if a processis waiting for thatmessage.

rome_get_event

void rome_get_event(
FILE *stream,
ROME_MESSAGE *msg,
int pri)

Therome_get_event routineformats thesupplied messageasanEVENT requestat ROME scheduling
priority pri andsendsit to the destination process specified by the (open) FILE stream. The routine
doesnot wait for thereply.

rome_get_local_context

ptr rome_get_local_context(
ROME_MESSAGE *msg)

Therome_get_local_context routine returns thedest_context valuefor themessagemsgasthough the
message hadbeen sentto thecurrent process.This is for usewith messages thatare‘in transit’ using
rome_pass_upstream.

rome_getcwd

char * rome_getcwd(void)

The rome_getcwdroutine returns the current valueof the ‘working directory’ processvariable asset
by therome_setcwdroutine.

rome_getmblk

void rome_getmblk(
FILE *stream,
ROME_MESSAGE *msg)

The rome_getmblkroutine formatsthe supplied message asa GETMBLK requestandsendsit to the
destinationprocessspecified by the(open)FILE stream. Theroutine does not wait for thereply.

rome_getroot

char * rome_getroot(void)

The rome_getroot routine returns the current value of the ‘device root’ processvariable assetby the
rome_setroot routine.

3



ROME_IF

rome_make_full_path

void rome_make_full_path(
char * to,
constchar * from)

The rome_make_full_path routine converts the supplied string in from into a full ROME-URL style
string in to, by adding the current device andworking directory for the process,if needed. If from
contains as‘:’ separator, it is assumedthat thestring is already a full URL, andis copied unchanged
to theoutput.

rome_make_url

int rome_make_url(
char *output,
ROME_URL *url,
int maxl)

Therome_make_url routineconvertsthedatastructureform of aURL, pointed to by theurl parameter,
to thestring form in theoutput parameter, up to amaximumof ���������
	 characters(leaving roomfor
theNUL to terminate thestring). Theroutine returns0 if theURL wasconvertedcorrectly andwithin
thesupplied length, and1 otherwise.

rome_newmblk

void rome_newmblk(
FILE *stream,
ROME_MESSAGE *msg,
int max)

Therome_newmblkroutineformatsthesupplied message asa NEWMBLK request for maxbytes and
sends it to thedestination processspecifiedby the(open) FILE stream. Theroutine does not wait for
thereply.

rome_open_url

FILE * rome_open_url(
ROME_URL *url,
constchar *mode)

Therome_open_url routine locatesa sparefile entry in theprocess’file table andcalls rome_fopen to
initialise thefile structurewith thesupplied parameters.

rome_outmblk

void rome_outmblk(
FILE *stream,
ROME_MESSAGE *msg)

Therome_outmblkroutine formatsthesupplied messageasanOUTMBLK requestandsends it to the
destinationprocessspecified by the(open)FILE stream. Theroutine does not wait for thereply.

4



ROME_IF

rome_parse_url

int rome_parse_url(
constchar * input,
ROME_URL *url)

The rome_parse_url routine convertsinput, thestring form of a URL, to theparsed structure into the
url parameter. Theroutine returns 0 if theURL wasparsed correctly, and1 otherwise.

rome_pass_downstream

void rome_pass_downstream(
queue_t*queue,
ROME_MESSAGE *msg)

Therome_pass_downstream routine is usedin a module pushedinto a sequenceof modulesto passa
message to thenext downstream(ie. towardsthedriver) module. Notethatwhenthereply is received
it mustbehandled with rome_pass_upstream, in orderto releasethecontext informationstored with
themessage.

rome_pass_upstream

void rome_pass_upstream(
ROME_MESSAGE *msg)

The rome_pass_upstreamroutine is usedin a modulepushed into a sequenceof modules to passa
message to the next upstream(ie. towardsthe application) module. The message must have been
previously handled in this processby anequivalentcall to rome_pass_downstream.

rome_putmblk

void rome_putmblk(
FILE *stream,
ROME_MESSAGE *msg)

The rome_putmblkroutine formatsthe supplied message asa PUTMBLK requestandsendsit to the
destinationprocessspecified by the(open)FILE stream. Theroutine does not wait for thereply.

rome_remhead

ROME_MESSAGE * rome_remhead(
ROME_MQ UEUE *qp)

The rome_remhead routine removes the first message from the headof the qp message queueand
returns it asthe result. If this is the lastmessage on thequeue, theheadandtail pointersarebothset
to NULL. Theroutine return NULL if thequeueis empty. No interlocks aretaken out by theroutine,
it is thecaller’s responsibility to call it within a critical section if thequeue is a shareddatastructure.

rome_retmblk

void rome_retmblk(
ROME_MESSAGE *msg)

5



ROME_IF

The rome_retmblk routine formatsthesupplied messageasa RETMBLK request andsendsit backto
theprocesswhich lastsent themessage. Theroutine waits for thereply (sincethis is usually handled
within a queue handler).

rome_send_command

int rome_send_command(
char *proc,
char *command)

Therome_send_commandroutinesends thestringcommandasaCOMMANDmessage to theprocess
namedin proc andwaits for thereply. Theroutine returnseither theresponsecodeto themessageor
ENOPROCESSif theprocessproc doesnot exist in thesystem.

rome_sendwait

int rome_sendwait(
ROME_MESSAGE *msg,
ROME_PROCESS*dest)

The rome_sendwaitroutinesends themessagemsgto theprocessidentified by destandwaits for the
reply. It returnseither thereturncodefrom thereply or EBADREPLY if thewrongreply is received.

rome_setcwd

void rome_setcwd(
constchar *where)

The rome_setcwdroutine replacesthe current value of the per-process ‘working directory’ variable
with a copy of thestring pointedto by thewhere variable.

rome_setroot

void rome_setroot(
constchar *where)

The rome_setroot routine replacesthe current value of the per-process‘device root’ variable with a
copy of thestringpointed to by thewhere variable.

rome_setup_mblk

void rome_setup_mblk(
mblk_t *n,
uchar *buff,
int size)

The rome_setup_mblk routine initialisesthe read,write anddatapointersof the supplied mblk, n, to
point to thestartof thebuffer buff with a buffer limit setat �
��������������� .

6


